Coincidence points and maximal elements of multifunctions on convex spaces
نویسنده
چکیده
Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
منابع مشابه
Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملOn Almost Coincidence Points in Generalized Convex Spaces
The notion of a generalized convex space we work with in this paper was introduced by Park and Kim in [10]. In generalized convex spaces, many results on fixed points, coincidence points, equilibrium problems, variational inequalities, continuous selections, saddle points, and others have been obtained, see, for example, [6, 8, 10–13]. In this paper, we obtain an almost coincidence point theore...
متن کاملMaximal Monotone Multifunctions of BrndstedRockafellar Type
We consider whether the “inequality-splitting” property established in the Brøndsted– Rockafellar theorem for the subdifferential of a proper convex lower semicontinuous function on a Banach space has an analog for arbitrary maximal monotone multifunctions. We introduce the maximal monotone multifunctions of type (ED), for which an “inequality-splitting” property does hold. These multifunctions...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کامل